"The Solar Wind as a Turbulence Laboratory"
Roberto Bruno and Vincenzo Carbone 
1 Introduction
1.1 What does turbulence stand for?
1.2 Dynamics vs. statistics
2 Equations and Phenomenology
2.1 The Navier–Stokes equation and the Reynolds number
2.2 The coupling between a charged fluid and the magnetic field
2.3 Scaling features of the equations
2.4 The non-linear energy cascade
2.5 The inhomogeneous case
2.6 Dynamical system approach to turbulence
2.7 Shell models for turbulence cascade
2.8 The phenomenology of fully developed turbulence: Fluid-like case
2.9 The phenomenology of fully developed turbulence: Magnetically-dominated case
2.10 Some exact relationships
2.11 Yaglom’s law for MHD turbulence
2.12 Density-mediated Elsässer variables and Yaglom’s law
2.13 Yaglom’s law in the shell model for MHD turbulence
3 Early Observations of MHD Turbulence in the Ecliptic
3.1 Turbulence in the ecliptic
3.2 Turbulence studied via Elsässer variables
4 Observations of MHD Turbulence in the Polar Wind
4.1 Evolving turbulence in the polar wind
4.2 Polar turbulence studied via Elsässer variables
5 Numerical Simulations
5.1 Local production of Alfvénic turbulence in the ecliptic
5.2 Local production of Alfvénic turbulence at high latitude
6 Compressive Turbulence
6.1 On the nature of compressive turbulence
6.2 Compressive turbulence in the polar wind
6.3 The effect of compressive phenomena on Alfvénic correlations
7 A Natural Wind Tunnel
7.1 Scaling exponents of structure functions
7.2 Probability distribution functions and self-similarity of fluctuations
7.3 What is intermittent in the solar wind turbulence? The multifractal approach
7.4 Fragmentation models for the energy transfer rate
7.5 A model for the departure from self-similarity
7.6 Intermittency properties recovered via a shell model
8 Observations of Yaglom’s Law in Solar Wind Turbulence
9 Intermittency Properties in the 3D Heliosphere: Taking a Look at the Data
9.1 Structure functions
9.2 Probability distribution functions
10 Turbulent Structures
10.1 On the statistics of magnetic field directional fluctuations
10.2 Radial evolution of intermittency in the ecliptic
10.3 Radial evolution of intermittency at high latitude
11 Solar Wind Heating by the Turbulent Energy Cascade
11.1 Dissipative/dispersive range in the solar wind turbulence
12 The Origin of the High-Frequency Region
12.1 A dissipation range
12.2 A dispersive range
13 Two Further Questions About Small-Scale Turbulence
13.1 Whistler modes scenario
13.2 Kinetic Alfvén waves scenario
13.3 Where does the fluid-like behavior break down in solar wind turbulence?
13.4 What physical processes replace “dissipation” in a collisionless plasma?
14 Conclusions and Remarks
A Some Characteristic Solar Wind Parameters
B Tools to Analyze MHD Turbulence in Space Plasmas
B.1 Statistical description of MHD turbulence
B.2 Spectra of the invariants in homogeneous turbulence
B.3 Introducing the Elsässer variables
C Wavelets as a Tool to Study Intermittency
D Reference Systems
D.1 Minimum variance reference system
D.2 The mean field reference system
E On-board Plasma and Magnetic Field Instrumentation
E.1 Plasma instrument: The top-hat
E.2 Measuring the velocity distribution function
E.3 Computing the moments of the velocity distribution function
E.4 Field instrument: The flux-gate magnetometer
F Spacecraft and Datasets


Writing a large review paper is not an easy task and it would not have been possible to accomplish this goal without having a good interaction with our colleagues, whom we have been working with in our Institutions. To this regard, we like to acknowledge the many discussions (more or less “heated”) we had with and the many advices and comments we had from all of them, particularly from B. Bavassano and P. Veltri. We also like to acknowledge the use of plasma and magnetic field data from Helios spacecraft to freshly produce some of the figures shown in the present review. In particular, we like to thank H. Rosenbauer and R. Schwenn, PIs of the plasma experiment, and F. Mariani and N.F. Ness, PIs of the second magnetic experiment on board Helios. We thank A. Pouquet, H. Politano, and V. Antoni for the possibility we had to compare solar wind data with both high-resolution numerical simulations and laboratory plasmas. Finally, we owe special thanks to E. Marsch and S.K. Solanki for giving us the opportunity to write this review.

Finally, we greatly appreciate the great effort made by an anonymous referee to review such a long paper. We like to thank her/him for her/his meticulous, efficient, and competent analysis of this first updated version of our review which helped us to make a better and more readable document.

  Go to previous page Scroll to top Go to next page