7 Open Issues

Solar prominences are among the most complicated structures in the solar corona. A full understanding of their formation, magnetic structure, and disappearance has not been reached yet, and a lot of physical effects remain to be included in prominence models. For this reason, theoretical models set up to interpret small amplitude oscillations are still poor. High-resolution observations of filaments suggest that they are made of threads whose thickness is at the the limit of the available spatial resolution. Then, one may wonder whether future improvements of the spatial resolution will provide with thinner and thinner threads or, on the contrary, there is a lower limit for thickness and we will be able to determine it in the future. The presence of these long and thin threads together with the place where they are anchored and the presence of flows along them suggest that they are thin flux tubes filled with continuous or discontinuous cool material.

This cool material is probably subject to cooling, heating, ionization, recombination, motions, etc., which, altogether, makes very difficult a proper theoretical treatment. For instance, in the case of the considered thermal mechanisms, up to now only optically thin radiation has been taken into account, while the inclusion of optically thick effects would probably be more realistic; the prominence heating mechanisms taken usually into account are tentative and “ad hoc”, while true prominence heating processes are still deeply unknown. An important step ahead would be to couple radiative transfer with magnetohydrodynamic waves as a mean to establish a relationship between velocity, density, magnetic field, and temperature perturbations, and the observed signatures of oscillations like spectral line shift, width and intensity. Partial ionization is another topic of interest for prominence oscillations since, apart from influencing the behaviour of magnetohydrodynamic waves, it poses an important problem for prominence equilibrium models since cross-field diffusion of neutral atoms can give place to flows and drain prominence material.

Another issue which still remains a mystery is the triggering mechanism of small amplitude oscillations. In the case of large amplitude oscillations, observations provide with information about the exciting mechanism, but the available observations of small amplitude oscillations show no signature of their exciting mechanism. Are these oscillations of chromospheric or photospheric origin? Are they generated inside prominence magnetic structures by small reconnection events? Are they produced by weak external disturbances coming from far away in the solar atmosphere?

The presence of flows adds another ingredient to be taken into account in the study of prominence oscillations and, up to now, we can only obtain one or two-dimensional information about the flow behaviour. It would be of great interest to collect information about the three-dimensional structure of flows and, probably, in the near future we could acquire this information by means of IRIS (External Linkhttp://iris.lmsal.com/).

The physical changing conditions of prominence plasmas suggest that for an in-depth theoretical study of prominence oscillations more complex models together with numerical simulations are needed. Therefore, and as a step ahead, in the next future numerical studies of the time evolution of magnetohydrodynamic waves in partially ionized flowing inhomogeneous prominence plasmas, subject to different physical processes such as ionization, recombination, etc., should be undertaken. However, a full three-dimensional dynamical prominence model involving magnetic equilibrium, radiative transfer, etc., whose oscillatory behaviour could be studied seems to be still far away in the future.

  Go to previous page Go up Go to next page