Arlt, R., 2009, “The Butterfly Diagram in the Eighteenth Century”, Solar Phys., 255, 143–153. [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.2233]
Arlt, R., Sule, A. and Filter, R., 2007a, “Stability of the solar tachocline with magnetic fields”, Astron. Nachr., 328, 1142. [External LinkDOI], [External LinkADS]
Arlt, R., Sule, A. and Rüdiger, G., 2007b, “Stability of toroidal magnetic fields in the solar tachocline”, Astron. Astrophys., 461, 295–301. [External LinkDOI], [External LinkADS]
Babcock, H.W., 1961, “The Topology of the Sun’s Magnetic Field and the 22-Year Cycle”, Astrophys. J., 133, 572–589. [External LinkDOI], [External LinkADS]
Bai, T., 1987, “Distribution of flares on the sun: superactive regions and active zones of 1980–1985”, Astrophys. J., 314, 795–807. [External LinkDOI], [External LinkADS]
Basu, S. and Antia, H.M., 2001, “A study of possible temporal and latitudinal variations in the properties of the solar tachocline”, Mon. Not. R. Astron. Soc., 324, 498–508. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0101314]
Baumann, I., Schmitt, D., Schüssler, M. and Solanki, S., 2004, “Evolution of the large-scale magnetic field on the solar surface: a parameter study”, Astron. Astrophys., 426, 1075–1091. [External LinkDOI], [External LinkADS]
Beer, J., 2000, “Long-term indirect indices of solar variability”, Space Sci. Rev., 94, 53–66. [External LinkADS]
Beer, J., Raisbeck, G.M. and Yiou, F., 1991, “Time variation of 10Be and solar activity”, in The Sun in Time, (Eds.) Sonett, C.P., Giampapa, M.S., Matthews, M.S., pp. 343–359, University of Arizona Press, Tucson
Beer, J., Tobias, S.M. and Weiss, N.O., 1998, “An Active Sun Throughout the Maunder Minimum”, Solar Phys., 181, 237–249. [External LinkDOI], [External LinkADS]
Bigazzi, A. and Ruzmaikin, A., 2004, “The sun’s preferred longitudes and the coupling of magnetic dynamo modes”, Astrophys. J., 604, 944–959. [External LinkDOI], [External LinkADS]
Blackman, E.G. and Brandenburg, A., 2002, “Dynamical nonlinearity in large-scale dynamo with shear”, Astrophys. J., 579, 359–373. [External LinkDOI], [External LinkADS]
Blackman, E.G. and Field, G.B., 2000, “Constraints on the magnitude of α in dynamo theory”, Astrophys. J., 534, 984–988. [External LinkDOI], [External LinkADS]
Bonanno, A., Elstner, D., Rüdiger, G. and Belvedere, G., 2003, “Parity properties of an advection-dominated solar α2Ω-dynamo”, Astron. Astrophys., 390, 673–680. [External LinkADS]
Bonanno, A., Elstner, D. and Belvedere, G., 2006, “Advection-dominated solar dynamo model with two-cell meridional flow and a positive α-effect in the tachocline”, Astron. Nachr., 327, 680. [External LinkDOI], [External LinkADS]
Boruta, N., 1996, “Solar dynamo surface waves in the presence of a primordial magnetic field: a 30 Gauss upper limit in the solar core”, Astrophys. J., 458, 832–849. [External LinkDOI], [External LinkADS]
Boyer, D.W. and Levy, E.H., 1984, “Oscillating dynamo magnetic field in the presence of an external nondynamo field: the influence of a solar primordial field”, Astrophys. J., 277, 848–861. [External LinkDOI], [External LinkADS]
Brandenburg, A., 2005, “The Case for a Distributed Solar Dynamo Shaped by Near-Surface Shear”, Astrophys. J., 625, 539–547. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0502275]
Brandenburg, A., 2009, “Advances in Theory and Simulations of Large-Scale Dynamos”, Space Sci. Rev., 144, 87–104. [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.0329]
Brandenburg, A. and Dobler, W., 2001, “Large scale dynamos with helicity loss through boundaries”, Astron. Astrophys., 369, 329–338. [External LinkDOI], [External LinkADS]
Brandenburg, A. and Schmitt, D., 1998, “Simulations of an alpha-effect due to magnetic buoyancy”, Astron. Astrophys., 338, L55–L58. [External LinkADS]
Brandenburg, A. and Subramanian, K., 2005, “Astrophysical magnetic fields and nonlinear dynamo theory”, Phys. Rep., 417, 1–209. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0405052]
Brandenburg, A., Tuominen, I., Nordlund, Å., Pulkkinen, P. and Stein, R.F., 1990, “3-D simulations of turbulent cyclonic magneto-convection”, Astron. Astrophys., 232, 277–291. [External LinkADS]
Brandenburg, A., Rädler, K.-H., Rheinhardt, M. and Subramanian, K., 2008, “Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence”, Astrophys. J. Lett., 687, L49–L52. [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.1287]
Braun, D.C. and Fan, Y., 1998, “Helioseismic measurements of the subsurface meridional flow”, Astrophys. J. Lett., 508, L105–L108. [External LinkDOI], [External LinkADS]
Brooke, J.M., Pelt, J., Tavakol, R. and Tworkowski, A., 1998, “Grand minima and equatorial symmetry breaking in axisymmetric dynamo models”, Astron. Astrophys., 332, 339–352. [External LinkADS]
Brooke, J.M., Moss, D. and Phillips, A., 2002, “Deep minima in stellar dynamos”, Astron. Astrophys., 395, 1013–1022. [External LinkDOI], [External LinkADS]
Brown, B.P., Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2009, “Wreathes of Magnetism in Rapidly Rotating Suns”, arXiv, e-print. [External LinkADS], [External LinkarXiv:0906.2407]
Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S. and Toomre, J., 2010, “Persistent Magnetic Wreaths in a Rapidly Rotating Sun”, Astrophys. J., 711, 424–438. [External LinkDOI], [External LinkADS]
Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A., 1989, “Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings”, Astrophys. J., 343, 526–546. [External LinkDOI], [External LinkADS]
Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2006, “Dynamo Action in the Solar Convection Zone and Tachocline: Pumping and Organization of Toroidal Fields”, Astrophys. J. Lett., 648, L157–L160. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0609153]
Brun, A.S., Miesch, M.S. and Toomre, J., 2004, “Global-scale turbulent convection and magnetic dynamo action in the solar envelope”, Astrophys. J., 614, 1073–1098. [External LinkDOI], [External LinkADS]
Bushby, P.J., 2006, “Zonal flows and grand minima in a solar dynamo model”, Mon. Not. R. Astron. Soc., 371, 772–780. [External LinkDOI], [External LinkADS]
Bushby, P.J. and Tobias, S.M., 2007, “On Predicting the Solar Cycle Using Mean-Field Models”, Astrophys. J., 661, 1289–1296. [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2345]
Caligari, P., Moreno-Insertis, F. and Schüssler, M., 1995, “Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitudes”, Astrophys. J., 441, 886–902. [External LinkDOI], [External LinkADS]
Cally, P.S., 2001, “Nonlinear Evolution of 2D Tachocline Instability”, Solar Phys., 199, 231–249. [External LinkDOI], [External LinkADS]
Cally, P.S., Dikpati, M. and Gilman, P.A., 2003, “Clamshell and Tipping Instabilities in a Two-dimensional Magnetohydrodynamic Tachocline”, Astrophys. J., 582, 1190–1205. [External LinkDOI], [External LinkADS]
Cally, P.S., Dikpati, M. and Gilman, P.A., 2008, “Three-dimensional magneto-shear instabilities in the solar tachocline – II. Axisymmetric case”, Mon. Not. R. Astron. Soc., 391, 891–900. [External LinkDOI], [External LinkADS]
Cameron, R. and Schüssler, M., 2007, “Solar Cycle Prediction Using Precursors and Flux Transport Models”, Astrophys. J., 659, 801–811. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0612693]
Cameron, R. and Schüssler, M., 2008, “A Robust Correlation between Growth Rate and Amplitude of Solar Cycles: Consequences for Prediction Methods”, Astrophys. J., 685, 1291–1296. [External LinkDOI], [External LinkADS]
Carbonell, M., Oliver, R. and Ballester, J.L., 1994, “A search for chaotic behaviour in solar activity”, Astron. Astrophys., 290, 983–994. [External LinkADS]
Cattaneo, F., 1999, “On the origin of magnetic fields in the quiet photosphere”, Astrophys. J. Lett., 515, L39–L42. [External LinkDOI], [External LinkADS]
Cattaneo, F. and Hughes, D.W., 1996, “Nonlinear saturation of the turbulent α-effect”, Phys. Rev. E, 54, R4532–R4535. [External LinkADS]
Cattaneo, F. and Hughes, D.W., 2009, “Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers”, Mon. Not. R. Astron. Soc., 395, L48–L51. [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.2138]
Cattaneo, F., Hughes, D.W. and Kim, E.-J., 1996, “Suppression of Chaos in a Simplified Nonlinear Dynamo Model”, Phys. Rev. Lett., 76, 2057–2060. [External LinkDOI], [External LinkADS]
Cattaneo, F., Emonet, T. and Weiss, N.O., 2003, “On the interaction between convection and magnetic fields”, Astrophys. J., 588, 1183–1198. [External LinkDOI], [External LinkADS]
Charbonneau, P., 2001, “Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the Solar Cycle”, Solar Phys., 199, 385–404. [External LinkADS]
Charbonneau, P., 2005, “A Maunder Minimum Scenario Based on Cross-Hemispheric Coupling and Intermittency”, Solar Phys., 229, 345–358. [External LinkDOI], [External LinkADS]
Charbonneau, P., 2007a, “Cross-hemispheric coupling in a Babcock–Leighton model of the solar cycle”, Adv. Space Res., 40, 899–906. [External LinkDOI], [External LinkADS]
Charbonneau, P., 2007b, “Babcock–Leighton models of the solar cycle: Questions and issues”, Adv. Space Res., 39, 1661–1669. [External LinkDOI], [External LinkADS]
Charbonneau, P. and Barlet, G., 2010, “The dynamo basis of solar cycle precursor schemes”, J. Atmos. Sol.-Terr. Phys., 2010, in press. [External LinkDOI]
Charbonneau, P. and Dikpati, M., 2000, “Stochastic Fluctuations in a Babcock-Leighton Model of the Solar Cycle”, Astrophys. J., 543, 1027–1043. [External LinkDOI], [External LinkADS]
Charbonneau, P. and MacGregor, K.B., 1996, “On the generation of equipartition-strength magnetic fields by turbulent hydromagnetic dynamos”, Astrophys. J. Lett., 473, L59–L62. [External LinkDOI], [External LinkADS]
Charbonneau, P. and MacGregor, K.B., 1997, “Solar Interface Dynamos. II. Linear, Kinematic Models in Spherical Geometry”, Astrophys. J., 486, 502–520. [External LinkDOI], [External LinkADS]
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J. and Tomczyk, S., 1999, “Helioseismic Constraints on the Structure of the Solar Tachocline”, Astrophys. J., 527, 445–460. [External LinkDOI], [External LinkADS]
Charbonneau, P., Blais-Laurier, G. and St-Jean, C., 2004, “Intermittency and Phase Persistence in a Babcock-Leighton Model of the Solar Cycle”, Astrophys. J. Lett., 616, L183–L186. [External LinkDOI], [External LinkADS]
Charbonneau, P., St-Jean, C. and Zacharias, P., 2005, “Fluctuations in Babcock–Leighton models of the solar cycle. I. period doubling and transition to chaos”, Astrophys. J., 619, 613–622. [External LinkDOI], [External LinkADS]
Charbonneau, P., Beaubien, G. and St-Jean, C., 2007, “Fluctuations in Babcock-Leighton Dynamos. II. Revisiting the Gnevyshev-Ohl Rule”, Astrophys. J., 658, 657–662. [External LinkDOI], [External LinkADS]
Chatterjee, P. and Choudhuri, A.R., 2006, “On Magnetic Coupling Between the Two Hemispheres in Solar Dynamo Models”, Solar Phys., 239, 29–39. [External LinkDOI], [External LinkADS]
Chatterjee, P., Nandy, D. and Choudhuri, A.R., 2004, “Full-sphere simulations of a circulation dominated solar dynamo: exploring the parity issue”, Astron. Astrophys., 427, 1019–1030. [External LinkDOI], [External LinkADS]
Choudhuri, A.R., 1990, “On the possibility of α2Ω-type dynamo in a thin layer inside the sun”, Astrophys. J., 355, 733–744. [External LinkDOI], [External LinkADS]
Choudhuri, A.R., 1992, “Stochastic fluctuations of the solar dynamo”, Astron. Astrophys., 253, 277–285. [External LinkADS]
Choudhuri, A.R., Schüssler, M. and Dikpati, M., 1995, “The solar dynamo with meridional circulation”, Astron. Astrophys., 303, L29–L32. [External LinkADS]
Choudhuri, A.R., Chatterjee, P. and Jiang, J., 2007, “Predicting Solar Cycle 24 With a Solar Dynamo Model”, Phys. Rev. Lett., 98, 131103. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0701527]
Christensen-Dalsgaard, J., 2002, “Helioseismology”, Rev. Mod. Phys., 74, 1073–1129. [External LinkADS]
Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1997, “Robustness of truncated αΩ dynamos with a dynamic alpha”, Solar Phys., 172, 3–13. [External LinkDOI], [External LinkADS]
Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1998, “Axisymmetric mean field dynamos with dynamic and algebraic α-quenching”, Astron. Astrophys., 329, 350–360. [External LinkADS]
Davidson, P.A., 2001, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge; New York. [External LinkGoogle Books]
DeLuca, E.E. and Gilman, P.A., 1988, “Dynamo theory for the interface between the convection zone and the radiative interior of a star”, Geophys. Astrophys. Fluid Dyn., 43, 119–148. [External LinkDOI]
DeLuca, E.E., Fisher, G.H. and Patten, B.M., 1993, “The dynamics of magnetic flux rings”, Astrophys. J., 411, 383–393. [External LinkDOI], [External LinkADS]
Dikpati, M. and Charbonneau, P., 1999, “A Babcock–Leighton Flux Transport Dynamo with Solar-like Differential Rotation”, Astrophys. J., 518, 508–520. [External LinkDOI], [External LinkADS]
Dikpati, M. and Gilman, P.A., 1999, “Joint instability of latitudinal differential rotation and concentrated toroidal fields below the solar convection zone”, Astrophys. J., 512, 417–441. [External LinkDOI], [External LinkADS]
Dikpati, M. and Gilman, P.A., 2001, “Flux-Transport Dynamos with α-Effect from Global Instability of Tachocline Differential Rotation: A Solution for Magnetic Parity Selection in the Sun”, Astrophys. J., 559, 428–442. [External LinkDOI], [External LinkADS]
Dikpati, M. and Gilman, P.A., 2006, “Simulating and Predicting Solar Cycles Using a Flux-Transport Dynamo”, Astrophys. J., 649, 498–514. [External LinkDOI], [External LinkADS]
Dikpati, M., Corbard, T., Thompson, M.J. and Gilman, P.A., 2002, “Flux Transport Solar Dynamos with Near-Surface Radial Shear”, Astrophys. J. Lett., 575, L41–L45. [External LinkDOI], [External LinkADS]
Dikpati, M., De Toma, G., Gilman, P.A., Arge, C.N. and White, O.R., 2004, “Diagnostic of polar field reversal in solar cycle 23 using a flux transport dynamo model”, Astrophys. J., 601, 1136–1151. [External LinkDOI], [External LinkADS]
Dikpati, M., Gilman, P.A. and MacGregor, K.B., 2005, “Constraints on the Applicability of an Interface Dynamo to the Sun”, Astrophys. J., 631, 647–652. [External LinkDOI], [External LinkADS]
Dikpati, M., de Toma, G. and Gilman, P.A., 2006, “Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool”, Geophys. Res. Lett., 33, L05102. [External LinkDOI], [External LinkADS]
Dikpati, M., Gilman, P.A., Cally, P.S. and Miesch, M.S., 2009, “Axisymmetric MHD Instabilities in Solar/Stellar Tachoclines”, Astrophys. J., 692, 1421–1431. [External LinkDOI], [External LinkADS]
D’Silva, S. and Choudhuri, A.R., 1993, “A theoretical model for tilts of bipolar magnetic regions”, Astron. Astrophys., 272, 621–633. [External LinkADS]
Durney, B.R., 1995, “On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field”, Solar Phys., 160, 213–235. [External LinkDOI], [External LinkADS]
Durney, B.R., 1996, “On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field, II”, Solar Phys., 166, 231–260. [External LinkDOI], [External LinkADS]
Durney, B.R., 1997, “On a Babcock–Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV”, Astrophys. J., 486, 1065–1077. [External LinkDOI], [External LinkADS]
Durney, B.R., 2000, “On the differences between odd and even solar cycles”, Solar Phys., 196, 421–426. [External LinkADS]
Durney, B.R., De Young, D.S. and Roxburgh, I.W., 1993, “On the generation of the large-scale and turbulent magnetic field in solar-type stars”, Solar Phys., 145, 207–225. [External LinkDOI], [External LinkADS]
Eddy, J.A., 1976, “The Maunder Minimum”, Science, 192, 1189–1202. [External LinkDOI], [External LinkADS]
Eddy, J.A., 1983, “The Maunder Minimum: A reappraisal”, Solar Phys., 89, 195–207. [External LinkDOI], [External LinkADS]
Fan, Y., 2009, “Magnetic Fields in the Solar Convection Zone”, Living Rev. Solar Phys., 6, lrsp-2009-4. [External LinkADS]. URL (accessed 9 April 2010):
Fan, Y., Fisher, G.H. and Deluca, E.E., 1993, “The origin of morphological asymmetries in bipolar active regions”, Astrophys. J., 405, 390–401. [External LinkDOI], [External LinkADS]
Ferriz-Mas, A. and Núñez, M. (Eds.), 2003, Advances in Nonlinear Dynamos, vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, Taylor & Francis, London, New York
Ferriz-Mas, A., Schmitt, D. and Schüssler, M., 1994, “A dynamo effect due to instability of magnetic flux tubes”, Astron. Astrophys., 289, 949–956. [External LinkADS]
Feynman, J. and Gabriel, S.B., 1990, “Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic Sun”, Solar Phys., 127, 393–403. [External LinkDOI], [External LinkADS]
Foukal, P.V., 2004, Solar Astrophysics, Wiley-VCH, Weinheim, 2nd edn.
Garaud, P. and Brummell, N.H., 2008, “On the Penetration of Meridional Circulation below the Solar Convection Zone”, Astrophys. J., 674, 498–510. [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.0258]
Ghizaru, M., Charbonneau, P. and Smolarkiewicz, P.K., 2010, “Magnetic cycles in global large-eddy simulations of solar convection”, Astrophys. J. Lett., 715, L133–L137. [External LinkDOI], [External LinkADS]
Gilman, P.A., 1983, “Dynamically consistent nonlinear dynamos driven by convection on a rotating spherical shell. II. Dynamos with cycles and strong feedback”, Astrophys. J. Suppl. Ser., 53, 243–268. [External LinkDOI], [External LinkADS]
Gilman, P.A. and Fox, P.A., 1997, “Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone”, Astrophys. J., 484, 439–454. [External LinkDOI], [External LinkADS]
Gilman, P.A. and Miesch, M.S., 2004, “Limits to penetration of meridional circulation below the solar convection zone”, Astrophys. J., 611, 568–574. [External LinkDOI], [External LinkADS]
Gilman, P.A. and Miller, J., 1981, “Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell”, Astrophys. J. Suppl. Ser., 46, 211–238. [External LinkDOI], [External LinkADS]
Gilman, P.A. and Rempel, M., 2005, “Concentration of Toroidal Magnetic Field in the Solar Tachocline by η-Quenching”, Astrophys. J., 630, 615–622. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0504003]
Gilman, P.A., Morrow, C.A. and Deluca, E.E., 1989, “Angular momentum transport and dynamo action in the sun. Implications of recent oscillation measurements”, Astrophys. J., 46, 528–537. [External LinkDOI], [External LinkADS]
Gizon, L., 2004, “Helioseismology of Time-Varying Flows Through The Solar Cycle”, Solar Phys., 224, 217–228. [External LinkDOI], [External LinkADS]
Gizon, L. and Rempel, M., 2008, “Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow”, Solar Phys., 251, 241–250. [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.0950]
Glatzmaier, G.A., 1985a, “Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone”, Astrophys. J., 291, 300–307. [External LinkDOI], [External LinkADS]
Glatzmaier, G.A., 1985b, “Numerical simulations of stellar convective dynamos. III. At the base of the convection zone”, Geophys. Astrophys. Fluid Dyn., 31, 137–150. [External LinkDOI], [External LinkADS]
Guerrero, G. and de Gouveia Dal Pino, E.M., 2007, “How does the shape and thickness of the tachocline affect the distribution of the toroidal magnetic fields in the solar dynamo?”, Astron. Astrophys., 464, 341–349. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0610703]
Guerrero, G. and de Gouveia Dal Pino, E.M., 2008, “Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model”, Astron. Astrophys., 485, 267–273. [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.3466]
Guerrero, G.A. and Muñoz, J.D., 2004, “Kinematic solar dynamo models with a deep meridional flow”, Mon. Not. R. Astron. Soc., 350, 317–322. [External LinkDOI], [External LinkADS]
Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M. and Hill, F., 2002, “Evolving Submerged Meridional Circulation Cells within the Upper Convection Zone Revealed by Ring-Diagram Analysis”, Astrophys. J., 570, 855–864. [External LinkDOI], [External LinkADS]
Hagenaar, H.J., Schrijver, C.J. and Title, A.M., 2003, “The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s)”, Astrophys. J., 584, 1107–1119. [External LinkDOI], [External LinkADS]
Haigh, J.D., 2007, “The Sun and the Earth’s Climate”, Living Rev. Solar Phys., 4, lrsp-2007-2. [External LinkADS]. URL (accessed 9 April 2010):
Hathaway, D.H., 1996, “Doppler measurements of the sun’s meridional flow”, Astrophys. J., 460, 1027–1033. [External LinkDOI], [External LinkADS]
Hathaway, D.H., 2010, “The Solar Cycle”, Living Rev. Solar Phys., 7, lrsp-2010-1. [External LinkADS]. URL (accessed 9 April 2010):
Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 1999, “A Synthesis of Solar Cycle Prediction Techniques”, J. Geophys. Res., 104, 22,375–22,388. [External LinkDOI], [External LinkADS]
Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 2002, “Group sunspot numbers: sunspot cycle characteristics”, Solar Phys., 211, 357–370. [External LinkADS]
Hathaway, D.H., Nandy, D., Wilson, R.M. and Reichmann, E.J., 2003, “Evidence that a deep meridional flow sets the sunspot cycle period”, Astrophys. J., 589, 665–670. [External LinkDOI], [External LinkADS]
Henney, C.J. and Harvey, J.W., 2002, “Phase coherence analysis of solar magnetic activity”, Solar Phys., 207, 199–218. [External LinkDOI], [External LinkADS]
Howe, R., 2009, “Solar Interior Rotation and its Variation”, Living Rev. Solar Phys., 6, lrsp-2009-1. [External LinkADS], [External LinkarXiv:0902.2406]. URL (accessed 9 April 2010):
Hoyng, P., 1988, “Turbulent transport of magnetic fields. III. Stochastic excitation of global magnetic modes”, Astrophys. J., 332, 857–871. [External LinkDOI], [External LinkADS]
Hoyng, P., 1993, “Helicity fluctuations in mean field theory: an explanation for the variability of the solar cycle?”, Astron. Astrophys., 272, 321–339. [External LinkADS]
Hoyng, P., 2003, “The field, the mean and the meaning”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 1–36, Taylor & Francis, London, New York. [External LinkGoogle Books]
Hoyt, D.V. and Schatten, K., 1998, “Group Sunspot Numbers: A New Solar Activity Reconstruction”, Solar Phys., 179, 189–219. [External LinkADS]
Hoyt, D.V. and Schatten, K.H., 1996, “How Well Was the Sun Observed during the Maunder Minimum?”, Solar Phys., 165, 181–192. [External LinkDOI], [External LinkADS]
Jennings, R.L. and Weiss, N.O., 1991, “Symmetry breaking in stellar dynamos”, Mon. Not. R. Astron. Soc., 252, 249–260. [External LinkADS]
Jiang, J., Chatterjee, P. and Choudhuri, A.R., 2007, “Solar activity forecast with a dynamo model”, Mon. Not. R. Astron. Soc., 381, 1527–1542. [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.2258]
Jiang, J., Cameron, R., Schmitt, D. and Schüssler, M., 2009, “Countercell Meridional Flow and Latitudinal Distribution of the Solar Polar Magnetic Field”, Astrophys. J., 693, L96–L99. [External LinkDOI], [External LinkADS]
Jouve, L. and Brun, A.S., 2007, “On the role of meridional flows in flux transport dynamo models”, Astron. Astrophys., 474, 239–250. [External LinkDOI], [External LinkADS], [External LinkarXiv:0712.3200]
Jouve, L., Brun, A.S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Käpylä, P.J., Moss, D., Rempel, M., Gilman, P., Korpi, M.J. and Kosovichev, A.G., 2008, “A solar mean field dynamo benchmark”, Astron. Astrophys., 483, 949–960. [External LinkDOI], [External LinkADS]
Jouve, L., Brown, B.P. and Brun, A.S., 2010, “Exploring the Pcyc vs. Prot relation with flux transport dynamo models of solar-like stars”, Astron. Astrophys., 509, A32. [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.1947]
Käpylä, P.J., Korpi, M.J., Ossendrijver, M. and Stix, M., 2006a, “Magnetoconvection and dynamo coefficients. III. α-effect and magnetic pumping in the rapid rotation regime”, Astron. Astrophys., 455, 401–412. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0602111]
Käpylä, P.J., Korpi, M.J. and Tuominen, I., 2006b, “Solar dynamo models with α-effect and turbulent pumping from local 3D convection calculations”, Astron. Nachr., 327, 884. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0606089]
Käpylä, P.J., Korpi, M.J., Brandenburg, A., Mitra, D. and Tavakol, R., 2010, “Convective dynamos in spherical wedge geometry”, Astron. Nachr., 331, 73. [External LinkDOI], [External LinkADS]
Kitchatinov, L.L. and Rüdiger, G., 1993, “Λ-effect and differential rotation in stellar convection zones”, Astron. Astrophys., 276, 96–102. [External LinkADS]
Kitchatinov, L.L. and Rüdiger, G., 2006, “Magnetic field confinement by meridional flow and the solar tachocline”, Astron. Astrophys., 453, 329–333. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0603417]
Kitchatinov, L.L., Rüdiger, G. and Küker, M., 1994, “Λ-quenching as the nonlinearity in stellar-turbulence dynamos”, Astron. Astrophys., 292, 125–132. [External LinkADS]
Kitchatinov, L.L., Mazur, M.V. and Jardine, M., 2000, “Magnetic field escape from a stellar convection zone and the dynamo-cycle period”, Astron. Astrophys., 359, 531–538. [External LinkADS]
Kitiashvili, I. and Kosovichev, A.G., 2008, “Application of Data Assimilation Method for Predicting Solar Cycles”, Astrophys. J., 688, L49–L52. [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.3284]
Kleeorin, N., Rogachevskii, I. and Ruzmaikin, A., 1995, “Magnitude of the dynamo-generated magnetic field in solar-type convective zones”, Astron. Astrophys., 297, 159–167. [External LinkADS]
Knobloch, E., Tobias, S.M. and Weiss, N.O., 1998, “Modulation and symmetry changes in stellar dynamos”, Mon. Not. R. Astron. Soc., 297, 1123–1138. [External LinkDOI], [External LinkADS]
Krause, F. and Rädler, K.-H., 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford; New York
Küker, M., Arlt, R. and Rüdiger, R., 1999, “The Maunder minimum as due to magnetic Λ-quenching”, Astron. Astrophys., 343, 977–982. [External LinkADS]
Küker, M., Rüdiger, G. and Schulz, M., 2001, “Circulation-dominated solar shell dynamo models with positive alpha effect”, Astron. Astrophys., 374, 301–308. [External LinkDOI], [External LinkADS]
Leighton, R.B., 1964, “Transport of magnetic fields on the sun”, Astrophys. J., 140, 1547–1562. [External LinkDOI], [External LinkADS]
Leighton, R.B., 1969, “A magneto-kinematic model of the solar cycle”, Astrophys. J., 156, 1–26. [External LinkDOI], [External LinkADS]
Lerche, I. and Parker, E.N., 1972, “The Generation of Magnetic Fields in Astrophysical Bodies. IX. A Solar Dynamo Based on Horizontal Shear”, Astrophys. J., 176, 213. [External LinkDOI], [External LinkADS]
Lopes, I. and Passos, D., 2009, “Solar Variability Induced in a Dynamo Code by Realistic Meridional Circulation Variations”, Solar Phys., 257, 1–12. [External LinkDOI], [External LinkADS]
MacGregor, K.B. and Charbonneau, P., 1997, “Solar interface dynamos. I. Linear, kinematic models in cartesian geometry”, Astrophys. J., 486, 484–501. [External LinkDOI], [External LinkADS]
Malkus, W.V.R. and Proctor, M.R.E., 1975, “The macrodynamics of α-effect dynamos in rotating fluids”, J. Fluid Mech., 67, 417–443
Markiel, J.A. and Thomas, J.H., 1999, “Solar interface dynamo models with a realistic rotation profile”, Astrophys. J., 523, 827–837. [External LinkDOI], [External LinkADS]
Mason, J., Hughes, D.W. and Tobias, S.M., 2002, “The competition in the solar dynamo between surface and deep-seated α-effect”, Astrophys. J. Lett., 580, L89–L92. [External LinkDOI], [External LinkADS]
Mason, J., Hughes, D.W. and Tobias, S.M., 2008, “The effects of flux transport on interface dynamos”, Mon. Not. R. Astron. Soc., 391, 467–480. [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.0199]
Matthews, P.C., Hughes, D.W. and Proctor, M.R.E., 1995, “Magnetic Buoyancy, Vorticity, and Three-dimensional Flux-Tube Formation”, Astrophys. J., 448, 938–941. [External LinkDOI], [External LinkADS]
Miesch, M.S., 2005, “Large-Scale Dynamics of the Convection Zone and Tachocline”, Living Rev. Solar Phys., 2, lrsp-2005-1. URL (accessed 1 May 2005):
Miesch, M.S. and Toomre, J., 2009, “Turbulence, Magnetism, and Shear in Stellar Interiors”, Annu. Rev. Fluid Mech., 41, 317–345. [External LinkDOI], [External LinkADS]
Mininni, P.D. and Gómez, D.O., 2002, “Study of Stochastic Fluctuations in a Shell Dynamo”, Astrophys. J., 573, 454–463. [External LinkDOI], [External LinkADS]
Mininni, P.D. and Gómez, D.O., 2004, “A new technique for comparing solar dynamo models and observations”, Astron. Astrophys., 426, 1065–1073. [External LinkDOI], [External LinkADS]
Mininni, P.D., Gómez, D.O. and Mindlin, G.B., 2002, “Instantaneous phase and amplitude correlation in the solar cycle”, Solar Phys., 208, 167–179. [External LinkDOI], [External LinkADS]
Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge; New York
Moreno-Insertis, F., 1983, “Rise time of horizontal magnetic flux tubes in the convection zone of the Sun”, Astron. Astrophys., 122, 241–250. [External LinkADS]
Moreno-Insertis, F., 1986, “Nonlinear time-evolution of kink-unstable magnetic flux tubes in the convective zone of the sun”, Astrophys. J., 166, 291–305. [External LinkADS]
Moss, D., 1999, “Non-axisymmetric solar magnetic fields”, Mon. Not. R. Astron. Soc., 306, 300–306. [External LinkDOI], [External LinkADS]
Moss, D. and Brooke, J.M., 2000, “Towards a model of the solar dynamo”, Mon. Not. R. Astron. Soc., 315, 521–533. [External LinkDOI], [External LinkADS]
Moss, D., Tuominen, I. and Brandenburg, A., 1990, “Buoyancy-limited thin-shell dynamos”, Astron. Astrophys., 240, 142–149. [External LinkADS]
Moss, D., Brandenburg, A. and Tuominen, I., 1991, “Properties of mean field dynamos with non-axisymmetric α-effect”, Astron. Astrophys., 347, 576–579. [External LinkADS]
Moss, D., Brandenburg, A., Tavakol, R. and Tuominen, I., 1992, “Stochastic effects in mean-field dynamos”, Astron. Astrophys., 265, 843–849. [External LinkADS]
Moss, D., Sokoloff, D., Usoskin, I. and Tutubalin, V., 2008, “Solar Grand Minima and Random Fluctuations in Dynamo Parameters”, Solar Phys., 250, 221–234. [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.3331]
Mundt, M.D., Maguire II, W.B. and Chase, R.R.P., 1991, “Chaos in the Sunspot Cycle: Analysis and Prediction”, J. Geophys. Res., 96, 1705–1716. [External LinkDOI], [External LinkADS]
Muñoz-Jaramillo, A., Nandy, D. and Martens, P.C.H., 2009, “Helioseismic Data Inclusion in Solar Dynamo Models”, Astrophys. J., 698, 461–478. [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.3441]
Muñoz-Jaramillo, A., Nandy, D. and Martens, P.C.H., 2010a, “Magnetic Quenching of Turbulent Diffusivity: Reconciling Mixing-length Theory Estimates with Kinematic Dynamo Models of the Solar Cycle”, arXiv, e-print. [External LinkADS], [External LinkarXiv:1007.1262]
Muñoz-Jaramillo, A., Nandy, D., Martens, P.C.H. and Yeates, A.R., 2010b, “A Double-Ring Algorithm for Modeling Solar Active Regions: Unifying Kinematic Dynamo Models and Surface Flux-Transport Simulations”, arXiv, e-print. [External LinkADS], [External LinkarXiv:1006.4346]
Mursula, K., Usoskin, I.G. and Kovaltsov, G.A., 2001, “Persistent 22-year cycle in sunspot activity: Evidence for a relic solar magnetic field”, Solar Phys., 198, 51–56. [External LinkDOI], [External LinkADS]
Nandy, D. and Choudhuri, A.R., 2001, “Toward a mean-field formulation of the Babcock–Leighton type solar dynamo. I. α-coefficient versus Durney’s double-ring approach”, Astrophys. J., 551, 576–585. [External LinkDOI], [External LinkADS]
Nandy, D. and Choudhuri, A.R., 2002, “Explaining the latitudinal distribution of sunspots with deep meridional flow”, Science, 296, 1671–1673. [External LinkDOI], [External LinkADS]
Ossendrijver, A.J.H., Hoyng, P. and Schmitt, D., 1996, “Stochastic excitation and memory of the solar dynamo”, Astron. Astrophys., 313, 938–948. [External LinkADS]
Ossendrijver, M., 2003, “The solar dynamo”, Astron. Astrophys. Rev., 11, 287–367. [External LinkDOI], [External LinkADS]
Ossendrijver, M.A.J.H., 2000a, “Grand minima in a buoyancy-driven solar dynamo”, Astron. Astrophys., 359, 364–372. [External LinkADS]
Ossendrijver, M.A.J.H., 2000b, “The dynamo effect of magnetic flux tubes”, Astron. Astrophys., 359, 1205–1210. [External LinkADS]
Ossendrijver, M.A.J.H. and Covas, E., 2003, “Crisis-induced intermittency due to attractor-widening in a buoyancy-driven solar dynamo”, Int. J. Bifurcat. Chaos, 13, 2327–2333. [External LinkDOI], [External LinkADS]
Ossendrijver, M.A.J.H. and Hoyng, P., 1996, “Stochastic and nonlinear fluctuations in a mean field dynamo”, Astron. Astrophys., 313, 959–970. [External LinkADS]
Ossendrijver, M.A.J.H. and Hoyng, P., 1997, “Mean magnetic field and energy balance of Parker’s surface-wave dynamo”, Astron. Astrophys., 324, 329–343. [External LinkADS]
Ossendrijver, M.A.J.H., Stix, M. and Brandenburg, A., 2001, “Magnetoconvection and dynamo coefficients: dependence of the α-effect on rotation and magnetic fields”, Astron. Astrophys., 376, 713–726. [External LinkDOI], [External LinkADS]
Ossendrijver, M.A.J.H., Stix, M., Brandenburg, A. and Rüdiger, G., 2002, “Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field”, Astron. Astrophys., 394, 735–745. [External LinkADS]
Otmianowska-Mazur, K., Rüdiger, G., Elstner, D. and Arlt, R., 1997, “The turbulent EMF as a time series and the ‘quality’ of dynamo cycles”, Geophys. Astrophys. Fluid Dyn., 86, 229–247. [External LinkDOI]
Parker, E.N., 1955, “Hydromagnetic Dynamo Models”, Astrophys. J., 122, 293–314. [External LinkDOI], [External LinkADS]
Parker, E.N., 1975, “The Generation of Magnetic Fields in Astrophysical Bodies. X. Magnetic Buoyancy and the Solar Dynamo”, Astrophys. J., 198, 205–209. [External LinkDOI], [External LinkADS]
Parker, E.N., 1982, “The dynamics of fibril magnetic fields. I. Effect of flux tubes on convection”, Astrophys. J., 256, 292–301. [External LinkDOI], [External LinkADS]
Parker, E.N., 1993, “A solar dynamo surface wave at the interface between convection and nonuniform rotation”, Astrophys. J., 408, 707–719. [External LinkDOI], [External LinkADS]
Passos, D. and Lopes, I., 2008, “A Low-Order Solar Dynamo Model: Inferred Meridional Circulation Variations Since 1750”, Astrophys. J., 686, 1420–1425. [External LinkDOI], [External LinkADS]
Passos, D. and Lopes, I.P., 2009, “Grand Minima Under the Light of a Low Order Dynamo Model”, arXiv, e-print. [External LinkADS], [External LinkarXiv:0908.0496]
Petrovay, K., 2000, “What makes the Sun tick?”, in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference: 25–29 September 2000, Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife, Tenerife, Spain, (Eds.) Vázquez, M., Schmieder, B., vol. SP-463 of ESA Conference Proceedings, pp. 3–14, European Space Agency, Nordwijk
Petrovay, K. and Kerekes, A., 2004, “The effect of a meridional flow on Parker’s interface dynamo”, Mon. Not. R. Astron. Soc., 351, L59–L62. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0404607]
Petrovay, K. and Szakály, G., 1999, “Transport effects in the evolution of the global solar magnetic field”, Solar Phys., 185, 1–13. [External LinkADS]
Phillips, J.A., Brooke, J.M. and Moss, D., 2002, “The importance of physical structure in solar dynamo models”, Astron. Astrophys., 392, 713–727. [External LinkDOI], [External LinkADS]
Pipin, V.V., 1999, “The Gleissberg cycle by a nonlinear αΛ dynamo”, Astron. Astrophys., 346, 295–302. [External LinkADS]
Pipin, V.V. and Seehafer, N., 2009, “Stellar dynamos with Ω × J effect”, Astron. Astrophys., 493, 819–828. [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.4225]
Platt, N., Spiegel, E.A. and Tresser, C., 1993, “On-off intermittency: A mechanism for bursting”, Phys. Rev. Lett., 70, 279–282. [External LinkDOI], [External LinkADS]
Pouquet, A., Frish, U. and Leorat, J., 1976, “Strong MHD helical turbulence and the nonlinear dynamo effect”, J. Fluid Mech., 77, 321–354. [External LinkDOI], [External LinkADS]
Proctor, M.R.E. and Gilbert, A.D. (Eds.), 1994, Lectures on Solar and Planetary Dynamos, Publications of the Newton Institute, Cambridge University Press, Cambridge; New York
Rädler, K.-H., Kleeorin, N. and Rogachevskii, I., 2003, “The Mean Electromotive Force for MHD Turbulence: The Case of a Weak Mean Magnetic Field and Slow Rotation”, Geophys. Astrophys. Fluid Dyn., 97, 249–274. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0209287]
Rempel, M., 2005, “Influence of Random Fluctuations in the Λ-Effect on Meridional Flow and Differential Rotation”, Astrophys. J., 631, 1286–1292. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0610132]
Rempel, M., 2006a, “Transport of Toroidal Magnetic Field by the Meridional Flow at the Base of the Solar Convection Zone”, Astrophys. J., 637, 1135–1142. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0610133]
Rempel, M., 2006b, “Flux-Transport Dynamos with Lorentz Force Feedback on Differential Rotation and Meridional Flow: Saturation Mechanism and Torsional Oscillations”, Astrophys. J., 647, 662–675. [External LinkDOI], [External LinkADS], [External Linkastro-ph/0604446]
Rempel, M. and Schüssler, M., 2001, “Intensification of magnetic fields by conversion of potential energy”, Astrophys. J. Lett., 552, L171–L174. [External LinkDOI], [External LinkADS]
Ribes, J.C. and Nesme-Ribes, E., 1993, “The solar sunspot cycle in the Maunder minimum AD1645 to AD1715”, Astron. Astrophys., 276, 549–563. [External LinkADS]
Roald, C.B. and Thomas, J.H., 1997, “Simple solar dynamo models with variable α and ω effects”, Mon. Not. R. Astron. Soc., 288, 551–564. [External LinkADS]
Roberts, P.H. and Stix, M., 1972, “α-Effect Dynamos, by the Bullard-Gellman Formalism”, Astron. Astrophys., 18, 453. [External LinkADS]
Rozelot, J.P., 1995, “On the chaotic behaviour of the solar activity”, Astron. Astrophys., 297, L45–L48. [External LinkADS]
Rüdiger, G. and Arlt, R., 2003, “Physics of the solar cycle”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 147–195, Taylor & Francis, London, New York. [External LinkGoogle Books]
Rüdiger, G. and Brandenburg, A., 1995, “A solar dynamo in the overshoot layer: cycle period and butterfly diagram”, Astron. Astrophys., 296, 557–566. [External LinkADS]
Rüdiger, G. and Elstner, D., 1994, “Non-axisymmetry vs. axisymmetry in dynamo-excited stellar magnetic fields”, Astron. Astrophys., 281, 46–50. [External LinkADS]
Rüdiger, G. and Elstner, D., 2002, “Is the Butterfly diagram due to meridional motions?”, Astron. Nachr., 323, 432–435. [External LinkDOI], [External LinkADS]
Rüdiger, G. and Hollerbach, R., 2004, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, Wiley-VCH, Weinheim. [External LinkADS], [External LinkGoogle Books]
Rüdiger, G. and Kitchatinov, L.L., 1993, “Alpha-effect and alpha-quenching”, Astron. Astrophys., 269, 581–588. [External LinkADS]
Rüdiger, G., Kitchatinov, L.L., Küker, M. and Schultz, M., 1994, “Dynamo models with magnetic diffusivity-quenching”, Geophys. Astrophys. Fluid Dyn., 78, 247–259. [External LinkDOI], [External LinkADS]
Rüdiger, G., Kitchatinov, L.L. and Arlt, R., 2005, “The penetration of meridional flow into the tachocline and its meaning for the solar dynamo”, Astron. Astrophys., 444, L53–L56. [External LinkDOI], [External LinkADS]
Schatten, K.H., 2009, “Modeling a Shallow Solar Dynamo”, Solar Phys., 255, 3–38. [External LinkDOI], [External LinkADS]
Schatten, K.H., Scherrer, P.H., Svalgaard, L. and Wilcox, J.M., 1978, “Using dynamo theory to predict the sunspot number during solar cycle 21”, Geophys. Res. Lett., 5, 411–414. [External LinkDOI], [External LinkADS]
Schmalz, S. and Stix, M., 1991, “An αΩ dynamo with order and chaos”, Astron. Astrophys., 245, 654–661. [External LinkADS]
Schmitt, D., 1987, “An αω-dynamo with an α-effect due to magnetostrophic waves”, Astron. Astrophys., 174, 281–287. [External LinkADS]
Schmitt, D. and Schüssler, M., 1989, “Non-linear dynamos I. One-dimensional model of a thin layer dynamo”, Astron. Astrophys., 223, 343–351. [External LinkADS]
Schmitt, D. and Schüssler, M., 2004, “Does the butterfly diagram indicate a solar flux-transport dynamo”, Astron. Astrophys., 421, 349–351. [External LinkADS]
Schmitt, D., Schüssler, M. and Ferriz-Mas, A., 1996, “Intermittent solar activity by an on-off dynamo”, Astron. Astrophys., 311, L1–L4. [External LinkADS]
Schou, J. and Bogart, R.S., 1998, “Flows and Horizontal Displacements from Ring Diagrams”, Astrophys. J. Lett., 504, L131–L134. [External LinkDOI], [External LinkADS]
Schrijver, C.J. and Siscoe, G.L. (Eds.), 2009, Heliophysics: Plasma Physics of the Local Cosmos, Cambridge University Press, Cambridge
Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J. and Shine, R.A., 1997, “Sustaining the Quiet Photospheric Network: The Balance of Flux Emergence, Fragmentation, Merging, and Cancellation”, Astrophys. J., 487, 424–436. [External LinkDOI], [External LinkADS]
Schrijver, C.J., DeRosa, M.L. and Title, A.M., 2002, “What Is Missing from Our Understanding of Long-Term Solar and Heliospheric Activity?”, Astrophys. J., 577, 1006–1012. [External LinkDOI], [External LinkADS]
Schüssler, M., 1977, “On Buoyant Magnetic Flux Tubes in the Solar Convection Zone”, Astron. Astrophys., 56, 439–442. [External LinkADS]
Schüssler, M., 1996, “Magnetic flux tubes and the solar dynamo”, in Solar and Astrophysical Magnetohydrodynamic Flows, Proceedings of the NATO Advanced Study Institute, held in Heraklion, Crete, Greece, June 1995, (Ed.) Tsinganos, K.C., vol. 481 of NATO ASI Series C, pp. 17–37, Kluwer, Dordrecht; Boston
Schüssler, M. and Ferriz-Mas, A., 2003, “Magnetic flux tubes and the dynamo problem”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 123–146, Taylor & Francis, London, New York. [External LinkGoogle Books]
Seehafer, N. and Pipin, V.V., 2009, “An advective solar-type dynamo without the α effect”, Astron. Astrophys., 508, 9–16. [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.2614]
Sheeley Jr, N.R., 1991, “Polar faculae: 1906–1990”, Astrophys. J., 374, 386–389. [External LinkADS]
Sokoloff, D. and Nesme-Ribes, E., 1994, “The Maunder minimum: A mixed-parity dynamo mode?”, Astron. Astrophys., 288, 293–298. [External LinkADS]
Spiegel, E.A. and Zahn, J.-P., 1992, “The solar tachocline”, Astron. Astrophys., 265, 106–114. [External LinkADS]
Spruit, H.C., 1981, “Equations for Thin Flux Tubes in Ideal MHD”, Astron. Astrophys., 102, 129–133. [External LinkADS]
Steiner, O. and Ferriz-Mas, A., 2005, “Connecting solar radiance variability to the solar dynamo with the virial theorem”, Astron. Nachr., 326, 190–193. [External LinkDOI], [External LinkADS]
Stix, M., 1976, “Differential Rotation and the Solar Dynamo”, Astron. Astrophys., 47, 243–254. [External LinkADS]
Stix, M., 2002, The Sun: An introduction, Astronomy and Astrophysics Library, Springer, Berlin, New York, 2nd edn.
Tapping, K., 1987, “Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7 cm flux”, J. Geophys. Res., 92, 829–838. [External LinkDOI]
Thelen, J.-C., 2000a, “A mean electromotive force induced by magnetic buoyancy instabilities”, Mon. Not. R. Astron. Soc., 315, 155–164. [External LinkDOI], [External LinkADS]
Thelen, J.-C., 2000b, “Nonlinear αω-dynamos driven by magnetic buoyancy”, Mon. Not. R. Astron. Soc., 315, 165–183. [External LinkDOI], [External LinkADS]
Tobias, S.M., 1996a, “Diffusivity quenching as a mechanism for Parker’s surface dynamo”, Astrophys. J., 467, 870–880. [External LinkDOI], [External LinkADS]
Tobias, S.M., 1996b, “Grand minimia in nonlinear dynamos”, Astron. Astrophys., 307, L21–L24. [External LinkADS]
Tobias, S.M., 1997, “The solar cycle: parity interactions and amplitude modulation”, Astron. Astrophys., 322, 1007–1017. [External LinkADS]
Tobias, S.M., 2002, “Modulation of solar and stellar dynamos”, Astron. Nachr., 323, 417–423. [External LinkDOI], [External LinkADS]
Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J., 2001, “Transport and storage of magnetic fields by overshooting turbulent convective convection”, Astrophys. J., 549, 1183–1203. [External LinkDOI], [External LinkADS]
Tobias, S.M., Cattaneo, F. and Brummell, N.H., 2008, “Convective Dynamos with Penetration, Rotation, and Shear”, Astrophys. J., 685, 596–605. [External LinkDOI], [External LinkADS]
Tomczyk, S., Schou, J. and Thompson, M.J., 1995, “Measurement of the Rotation Rate in the Deep Solar Interior”, Astrophys. J. Lett., 448, L57–L60. [External LinkDOI], [External LinkADS]
Toomre, J., Christensen-Dalsgaard, J., Hill, F., Howe, R., Komm, R.W., Schou, J. and Thompson, M.J., 2003, “Transient oscillations near the solar tachocline”, in Local and Global Helioseismology: The Present and Future, Proceedings of SOHO 12/GONG+ 2002, 27 October – 1 November 2002, Big Bear Lake, California, U.S.A., (Ed.) Sawaya-Lacoste, H., vol. SP-517 of ESA Conference Proceedings, pp. 409–412, ESA, Noordwijk. [External LinkADS]
Tworkowski, A., Tavakol, R., Brandenburg, A., Brooke, J.M., Moss, D. and Tuominen, I., 1998, “Intermittent behaviour in axisymmetric mean-field dynamo models in spherical shells”, Mon. Not. R. Astron. Soc., 296, 287–295. [External LinkDOI], [External LinkADS]
Ulrich, R.K. and Boyden, J.E., 2005, “The Solar Surface Toroidal Magnetic Field”, Astrophys. J. Lett., 620, L123–L127. [External LinkDOI], [External LinkADS]
Usoskin, I.G., 2008, “A History of Solar Activity over Millennia”, Living Rev. Solar Phys., 5, lrsp-2008-3. [External LinkADS], [External LinkarXiv:0810.3972]. URL (accessed 9 April 2010):
Usoskin, I.G. and Mursula, K., 2003, “Long-term solar cycle evolution: Review of recent developments”, Solar Phys., 218, 319–343. [External LinkDOI]
Usoskin, I.G., Mursula, K., Arlt, R. and Kovaltsov, G.A., 2009a, “A Solar Cycle Lost in 1793–1800: Early Sunspot Observations Resolve the Old Mystery”, Astrophys. J. Lett., 700, L154–L157. [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.0063]
Usoskin, I.G., Sokoloff, D. and Moss, D., 2009b, “Grand Minima of Solar Activity and the Mean-Field Dynamo”, Solar Phys., 254, 345–355. [External LinkDOI], [External LinkADS]
van Ballegooijen, A.A. and Choudhuri, A.R., 1988, “The possible role of meridional circulation in suppressing magnetic buoyancy”, Astrophys. J., 333, 965–977. [External LinkDOI], [External LinkADS]
Wang, Y.-M. and Sheeley Jr, N.R., 1991, “Magnetic flux transport and the Sun’s dipole moment: New twists to the Babcock-Leighton model”, Astrophys. J., 375, 761–770. [External LinkADS]
Wang, Y.-M., Nash, A.G. and Sheeley Jr, N.R., 1989, “Magnetic flux transport on the sun”, Science, 245, 712–718. [External LinkDOI], [External LinkADS]
Wang, Y.-M., Sheeley Jr, N.R. and Nash, A.G., 1991, “A new cycle model including meridional circulation”, Astrophys. J., 383, 431–442. [External LinkDOI], [External LinkADS]
Wang, Y.-M., Lean, J. and Sheeley Jr, N.R., 2002, “Role of Meridional Flow in the Secular Evolution of the Sun’s Polar Fields and Open Flux”, Astrophys. J. Lett., 577, L53–L57. [External LinkADS]
Weiss, N.O., Cattaneo, F. and Jones, C.A., 1984, “Periodic and aperiodic dynamo waves”, Geophys. Astrophys. Fluid Dyn., 30, 305–341. [External LinkDOI], [External LinkADS]
Wilmot-Smith, A.L., Nandy, D., Hornig, G. and Martens, P.C.H., 2006, “A Time Delay Model for Solar and Stellar Dynamos”, Astrophys. J., 652, 696–708. [External LinkDOI], [External LinkADS]
Yeates, A.R., Nandy, D. and Mackay, D.H., 2008, “Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones”, Astrophys. J., 673, 544–556. [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.1046]
Yoshimura, H., 1975, “Solar-cycle dynamo wave propagation”, Astrophys. J., 201, 740–748. [External LinkDOI], [External LinkADS]
Yoshimura, H., 1978, “Nonlinear astrophysical dynamos: Multiple-period dynamo wave oscillations and long-term modulations of the 22 year solar cycle”, Astrophys. J., 226, 706–719. [External LinkDOI], [External LinkADS]
Zhang, K., Chan, K.H., Zou, J., Liao, X. and Schubert, G., 2003a, “A three-dimensional spherical nonlinear interface dynamo”, Astrophys. J., 596, 663–679. [External LinkDOI], [External LinkADS]
Zhang, K., Liao, X. and Schubert, G., 2003b, “Nonaxisymmetric Instability of a Toroidal Magnetic Field in a Rotating Sphere”, Astrophys. J., 585, 1124–1137. [External LinkDOI], [External LinkADS]
Zhang, K., Liao, X. and Schubert, G., 2004, “A sandwich interface dynamo: linear dynamo waves in the sun”, Astrophys. J., 602, 468–480. [External LinkDOI], [External LinkADS]