1 Introduction

The story of supergranulation really started in Oxford when Avril B. Hart reported in 1953 the existence of a “noisy” fluctuating velocity field on top of the mean rotation speed of the solar equator that she was measuring (Hart, 1954Jump To The Next Citation Point). Actually, it is most probable that this “noise”was already detected as early as 1915 by Plaskett (1916). Two years after her first detailed report, Hart (1956Jump To The Next Citation Point) confirmed the discovery and was able to give the first estimate1 of 26 Mm for the typical horizontal length scale of these “velocity fluctuations” (sic). Supergranulation was further recognised as a characteristic feature of the whole surface of the quiet Sun (the regions of weak magnetic fields, which represent the most important part of the solar surface) after the seminal work of Leighton et al. (1962Jump To The Next Citation Point), who published the first Doppler images of the Sun (and also the first detection of the five minutes oscillations). This work was soon after completed by another important paper by Simon and Leighton (1964Jump To The Next Citation Point) who showed, amongst other results, the intimate relation between supergranulation and the magnetic network of the quiet Sun.

It is remarkable that all the fundamentals of supergranulation have basically been uncovered over that 1954 – 1964 decade. Since then, progresses have been much less spectacular, especially on the theoretical side. This is certainly why supergranulation is still a fascinating subject. We are still wondering where it comes from, what its exact relation with magnetic fields is, if it is a universal feature of solar type stars, or of stellar surface convection, if it plays a role in the solar dynamo(s), etc. All these questions are pending fifty years after the discovery. There are many reasons why the solar physics community has not yet managed to answer them, several of which are not actually specific to the supergranulation problem. Most of these reasons are described in detail in this review, but it is worth pointing out a few important issues here as an introduction.

For a long time only a limited set of observables and restricted time-records of the evolution of the supergranulation pattern have been available, may it be on short (24 consecutive hours) or long timescales (a solar cycle). This has somewhat hindered the study of the detailed spatial structure of supergranulation and the identification of the physical factors that affect it (buoyancy, stratification, magnetic fields, rotation). From the theoretical and numerical perspectives, on the other hand, the strongly nonlinear physical nature of magnetised thermal convection in the outer layers of the Sun makes it extremely difficult to come up with a simple, unique, verifiable physical model of the process (a similar problem arises in many subfields of solar physics, if not of astrophysics). Overall, these observational uncertainties and theoretical or numerical limitations have somewhat negatively interfered to prevent a rigorous solution to the supergranulation problem. The currently fairly obfuscated state of affairs may nevertheless get clarified in a near future, as the solar physics community is now armed with both high-resolution solar observatories such as Hinode2 and large supercomputers that allow for increasingly realistic numerical simulations of the complex solar surface flows. However, it is clear that stronger connections between theory, numerics, and observations need to be established for the problem to be resolved.

In this review, we would like to introduce readers to this subject by first describing the full range of past and current research activities pertaining to the solar supergranulation, from the breadth of historical and modern observational results to the most elaborate numerical models of supergranulation convection. We particularly wish to provide a useful guide to the abundant literature related to that theme, to point out the important findings in the field, but also to stress the limitations and difficulties that have been encountered over the years in order to help overcome them. To this end, we attempt to discuss the already existing or possible connections between various pieces of research and try to identify some important questions whose answer may be crucial to understand how and why supergranulation originates.

The review is divided into eight parts, including this introduction. The next two sections offer some introductory material on the physics of deep and surface convection in the Sun (Section 2) and a brief recap on small-scale flows, namely granulation and mesogranulation (Section 3.1). Section 4 is dedicated to a presentation of observational facts that have been collected on supergranulation. We then carry on with the discussion of existing theoretical models to explain the origin of supergranulation in Section 5. In Section 6, we discuss related numerical experiments. Our current knowledge on supergranulation is summarised and commented in Section 7 for the convenience of hurried readers. In the light of the present understanding of multiscale dynamics of the quiet photosphere, we finally suggest a tentative picture of supergranulation as a dynamical feature of turbulent magnetohydrodynamic (MHD) convection in an extended spatial domain, with the aim of stimulating future research and discussions. We notably propose several numerical and observational diagnostics that could help make important progress on the problem in the near future (Section 8).

We tried to make the paper readable by all astrophysicists, assuming only little background in that field and trying to avoid as much as possible the solar physicists jargon, or to explain it when necessary.

  Go to previous page Go up Go to next page