Go to previous page Go up Go to next page

6.7 What causes Maunder-type Grand Minima?

The origin of Grand Minima in solar activity is also a question subjected to intense scrutiny. Broadly speaking, Grand Minima can occur either through amplitude modulation of a basic underlying dynamo cycle, or through intermittency. In this latter case, the transition from one state to another can take place via the system’s internal dynamics, or through the influence of external stochastic noise, or both. Not surprisingly, a large number of plausible Grand Minima models can now be found in the extant literature (cf. Section 5.6).

Historical researches have shown that the Sun climbed out of the Maunder Minimum gradually, and showing strongly asymmetric activity, with nearly all sunspots observed between 1670 and 1715 located in the Southern solar hemisphere (see Ribes and Nesme-Ribes, 1993). This is the kind of pattern that is readily produced by nonlinear modulation of two dynamo modes of comparable period but opposite parity (cf. Figure 20View Image herein; see also Beer et al., 1998Sokoloff and Nesme-Ribes, 1994). Then again, in the context of an intermittency-based model, it is quite conceivable that one hemisphere can pull out of a quiescent epoch before the other, thus yielding sunspot distributions compatible with the aforecited observations in the late Maunder Minimum. Such scenarios, relying on cross-hemispheric coupling, have hardly begun to be explored.

Another possible avenue for distinguishing between these various scenarios is the persistence of the primary cycle’s phase through Grand Minima. Generally speaking, models relying on amplitude modulation can be expected to exhibit good phase persistence across such minima, because the same basic cycle is operating at all times (cf. Figure 20View Image). Intermittency, on the other hand, should not necessarily lead to phase persistence, since the active and quiescent phases are governed by distinct dynamics. One noteworthy exception to these expectations is the intermittent Babcock-Leighton solution presented in Charbonneau et al. (2004), where the cycle’s phase can be sustained across Grand Minima, through the regulating influence of meridional circulation. One can but hope that careful analysis of cosmogenic radioisotope data may soon indicate the degree to which the solar cycle’s phase persisted through the Maunder, Spörer, and Wolf Grand Minima, in order to narrow down the range of possibilities.


  Go to previous page Go up Go to next page