It was already noted that in solar cycle models based on the BabcockLeighton mechanism of poloidal field generation, meridional circulation effectively sets  and even regulates  the cycle period (cf. Section 4.8.2; see also Dikpati and Charbonneau, 1999; Charbonneau and Dikpati, 2000). In doing so, it also introduces a long time delay in the dynamo mechanism, “long” in the sense of being comparable to the cycle period. This delay originates with the time required for circulation to advect the surface poloidal field down to the coreenvelope interface, where the toroidal component is produced (AC in Figure 17). In contrast, the production of poloidal field from the deepseated toroidal field (CD), is a “fast” process, growth rates and buoyant rise times for sunspotforming toroidal flux ropes being of the order of a few months (see MorenoInsertis, 1986; Fan et al., 1993; Caligari et al., 1995, and references therein). The first, long time delay turns out to have important dynamical consequences.
The long time delay inherent in BL models of the solar cycle allows a formulation of cycletocycle amplitude variations in terms of a simple onedimensional iterative map (Durney, 2000; Charbonneau, 2001). Working in the kinematic regime, neglecting resistive dissipation, and in view of the conveyor belt argument of Section 4.8, the toroidal field strength at cycle is assumed to be linearly proportional to the poloidal field strength of cycle , i.e.,
Now, because flux eruption is a fast process, the strength of the poloidal field at cycle is (nonlinearly) proportional to the toroidal field strength of the current cycle: Here the “BabcockLeighton” function measures the efficiency of surface poloidal field production from the deepseated toroidal field. Substitution of Equation (38) into Equation (39) leads immediately to a onedimensional iterative map, where the ’s are normalized amplitudes, and the normalization constants as well as the constant in Equation (38) have been absorbed into the definition of the map’s parameter , here operationally equivalent to a dynamo number (see Charbonneau, 2001). We consider here the following nonlinear function, with , , , and . This catches an essential feature of the BL mechanism, namely the fact that it can only operate in a finite range of toroidal field strength.A bifurcation diagram for the resulting iterative map is presented in Panel A of Figure 21. For a given value of the map parameter , the diagram gives the locus of the amplitude iterate for successive values. The “critical dynamo number” above which dynamo action becomes possible, corresponds here to ( for smaller values). For , the iterate is stable at some finite value of , which increases gradually with . This corresponds to a constant amplitude cycle. As reaches , period doubling occurs, with the iterate alternating between high and low values (e.g., and at ). Further period doubling occurs at , then at , then again at , and ever faster until a point is reached beyond which the amplitude iterate seems to vary without any obvious pattern (although within a bounded range); this is in fact a chaotic regime.

Panel B of Figure 21 shows a bifurcation diagram, conceptually equivalent to that shown in Panel A, but now constructed from a sequence of numerical solutions of the BabcockLeighton model discussed earlier in Section 4.8, for increasing values of the dynamo number in that model. Time series of magnetic energy were calculated from the numerical solutions, and successive peaks found and plotted for each individual solution. The sequence of period doubling, eventually leading to a chaotic regime, is strikingly similar to the bifurcation diagram constructed from the corresponding iterative map, down to the narrow multiperiodic windows interspersed in the chaotic domain. This demonstrates that time delay effects are a robust feature, and represent a very powerful source of cycle amplitude fluctuation in BabcockLeighton models, even in the kinematic regime (for further discussion see Charbonneau, 2001; Charbonneau et al., 2005).
http://www.livingreviews.org/lrsp20052 
© Max Planck Society and the author(s)
Problems/comments to 