Go to previous page Go up Go to next page

6 Conclusions

Update

The study of solar-like winds around other stars is not an easy one, due to the difficulty in detecting these winds. However, such measurements are the only way to empirically infer the history of the solar wind and to assess its potential effects on atmospheres of planets in our solar system. At this time, the indirect astrospheric Lyα absorption technique is the only way to detect weak solar-like stellar winds. Radio and X-ray observations can place limits on wind fluxes (see Section 3), but there is no reason to believe that these diagnostics will approach the sensitivity level of the Lyα diagnostic in the near future.

Currently there are only about a dozen mass loss measurements for solar-like stars, a rather small data sample. Additional astrospheric detections are required to better constrain relations between stellar winds, activity, and age. Unfortunately, the STIS instrument on HST failed in August 2004, and at the time of this writing is still unavailable. Furthermore, there is no future mission even in the planning stages that would be capable of the high resolution UV spectrometry necessary to detect absorption signatures of stellar astrospheres. Thus, the future of this subject area is very uncertain, at least on the data side. On the theory side, there is hope that improvements in our ability to numerically model the heliosphere and astrospheres will allow more precise analyses of existing data, and in this way improve our understanding of solar-like stellar winds and astrospheres.


  Go to previous page Go up Go to next page